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Most of the sharp peaks, recently reported by Constant & Shlichta [Acta Cryst.

(2003), A59, 281±282], in the frequency distribution of known tetrahedral and

hexagonal±rhombohedral inorganic compounds apparently correspond to

integral lattices. These are characterized by an integral metric tensor of their

basis vectors (up to a unit-length factor). Integral lattices also occur in molecular

forms of axial-symmetric biomacromolecules, as illustrated by a RNA

quadruplex. A general tendency in nature to reduce the number of structural

free parameters is conjectured.

1. Introduction

An integral lattice is a lattice compatible with an integral metrics. It

means that there is a unit of length such that the metric tensor of the

scalar product of the basis vectors of the lattice has integral entries.

This property does not depend on the lattice basis selected. Metric

tensors for different choices of the unit length only differ by a positive

constant factor and are considered to be equivalent. Accordingly, the

rational case is equivalent to the integral one. In two dimensions, the

square and the hexagonal lattices are integral, whereas the oblique,

rhombic and rectangular lattices are not, at least not in the general

case. In the conventional choice of the basis of the hexagonal lattice

and with a unit of length given by the lattice parameter a, the metric

tensor gik is rational: g11 � g22 � 1 and g12 � g21 � ÿ1=2. By

choosing
���
2
p

a as unit of length, one gets the integral case, the

corresponding constant factor being 2a2. In three dimensions, only

the cubic lattices are integral, whereas generic hexagonal ones are

not. One only gets an integral hexagonal lattice for special values of

the c=a ratio as, for example, in the hexagonal close-packing case

(h.c.p. lattice) with c=a � �������
8=3
p

. The corresponding metric tensor is

rational, up to the constant factor a2, so that the h.c.p. lattice is

integral. Another well known integral lattice is the hexagonal `cubic'

lattice, considered by Frank (1965), also associated with a speci®c

mode of packing, where the c=a ratio is
�������
3=2
p

. Despite their structural

relevance, the special character of these hexagonal lattices does not

affect their crystallographic characterization in terms of Bravais class,

crystal class, holohedry and so on. Only within a general crystal-

lography (Janner, 2001), where point groups of in®nite order occur

leaving a lattice invariant, is the symmetry of integral lattices, in

general, larger than in the generic real case. This has been shown, in

particular, in the case of ice (Janner, 1997). Within classical crystal-

lography, integral lattices do have characteristic properties, for

example in terms of diffraction patterns and of packing units, as

discussed by Frank (1965) in the `cubic' hexagonal case mentioned

above, and analyzed further by other authors (Singh et al., 1998;

Lidin, 1998; Ranganathan et al., 2002). As remarked by Frank (1965),

and implicitly taken into account by the other authors, these prop-

erties are stable with respect to small deviations from the ideal case.

Indeed, the integral lattice can be recovered from the real one by an

af®ne transformation, which only has a perturbative effect on the

properties of the ideal case.

2. Crystal lattice parameters

Recently, Constant & Shlichta (2003) reported on the variation in

abundance of known inorganic crystalline compounds as a function of

lattice constants, on the basis of the data tables of Donnay & Ondik

(1973). A plot of the frequency as a function of c=a of hexagonal±

rhombohedral and of tetragonal compounds shows a number of sharp

peaks (Constant & Shlichta, 2003). One of these, at c=a ' 1:6,

corresponds to the h.c.p. lattice discussed above. The aim of the

present communication is to support the idea that more peaks

occurring in Figs. 1 and 2 of their paper can be associated with

integral lattices. The correspondence is given in Tables 1 and 2, where

all the important peaks observed are listed, including those that are

probably due to statistical ¯uctuations and not to integral lattices. The

Table 1
Frequency peaks of known inorganic hexagonal±rhombohedral crystals [according
to Constant & Shlichta (2003), from Donnay & Ondik, (1973)].

Remark: the change in slope at c=a � 1 has been interpreted as a non-resolved peak.

Frequency
N�c=a; 0:1�

Peak at
c=a

Integral lattice
c=a

Frequency
N�c=a; 0:1�

Peak at
c=a

Integral lattice
c=a

390 0.9
���
3
p
=2 � 0:86 . . . 65 3.2 2

�������
8=3
p � 3:26 . . .

280 1.0 1.0 35 3.7
�����
14
p � 3:74 . . .

145 1.2
�������
3=2
p � 1:22 . . . 40 3.9

�����
15
p � 3:87 . . .

130 1.4
���
2
p � 1:41 . . . 25 4.3 . . .

420 1.6
�������
8=3
p � 1:63 . . . 25 4.5

�����
20
p � 4:47 . . .

65 2.4
���
6
p � 2:45 . . . 48 4.9 3

�������
8=3
p � 4:89 . . .

80 2.7
����������
15=2
p � 2:73 . . .

Table 2
Frequency peaks of known inorganic tetragonal crystals [according to Constant &
Shlichta (2003), from Donnay & Ondik (1973)].

Frequency
N�c=a; 0:05�

Peak at
c=a

Integral lattice
c=a

Frequency
N�c=a; 0:05�

Peak at
c=a

Integral lattice
c=a

62 0.35 1=2
���
2
p � 0:35 . . . 32 1.85 . . .

96 0.55 1=
���
3
p � 0:57 . . . 73 1.95 2.0

104 0.7 1=
���
2
p � 0:70 . . . 60 2.13 3

���
2
p
=2 � 2:12 . . .

106 0.86
���
3
p
=2 � 0:86 . . . 25 2.45

���
6
p � 2:45 . . .

125 1.05 3
���
2
p
=4 � 1:06 . . . 9 2.8 2

���
2
p � 2:82 . . .

37 1.2
�������
3=2
p � 1:22 . . . 19 3.15

�����
10
p � 3:16 . . .

65 1.4
���
2
p � 1:41 . . . 19 3.3 7

���
2
p
=3 � 3:3 . . .

45 1.6
�������
5=2
p � 1:58 . . . 12 5.9

�����
35
p � 5:91 . . .



frequencies and the c=a values reported in the tables are approxi-

mations deduced from the plots published. N�c=a; 0:1� and

N�c=a; 0:05� indicate the number of compounds within each 0.1 and

0.05 range of c=a, respectively. The assignment indicated in the tables

is not unique because it is approximate. Structurally relevant are only

the square roots of reduced fractions with small entries (involving a

few prime factors like 2, 3, 5 and 7). But even in this case, the

assignment has purely geometric implications (like characteristic

lattice±sublattice scaling relations) and it allows but does not guar-

antee properties like a higher point-group symmetry or a speci®c type

of packing. A preliminary investigation, in collaboration with R. de

Gelder of the Institute for Crystallography of the University of

Nijmegen, reveals a similar behavior in the frequency distribution of

crystals of small organic molecules, of crystals of biomacromolecules

and of a larger class of inorganic crystals representing together about

40000 hexagonal and tetragonal entries.

3. Molecular forms

The molecular forms of axial-symmetric proteins and of helical

nucleic acids also point out the possible structural importance of

integral lattices. In these cases, the inner and outer envelopes of the

molecule can be chosen with vertices at points of a lattice possibly

having a larger point group than the symmetry of the molecule. As

illustration, the case of the RNA guanosine-50-phosphate quadruplex

is presented (Zimmerman, 1976). More examples will be reported

elsewhere. This RNA forms a quadruple helix generated by a planar

arrangement of four rG nucleotides (Zimmerman, 1976), which is the

molecular unit considered here. The envelope of this molecule is

tetragonal. The basis square of the outer envelope is scaled by a

factor 6 with respect to the square of the inner envelope, which is that

of the central channel (Fig. 1). This channel de®nes an integral

tetragonal lattice with parameters a and c � 2a, a sublattice of the

cubic lattice. The value of the cubic parameter is given by the minimal

atomic distance of the guanine O(6) atom from the fourfold axis

(a � r � 2:28 AÊ ). With respect to the cubic basis, the indices of point-

group representatives of the vertices of the molecular form are [100],

[102] for the inner envelope and [600], [602] for the outer envelope.

An intermediate tetragonal form with vertices at [330] and [332]

separates the four bases guanine from the backbone of the sugar±

phosphate molecules.

4. Conclusions

The integral lattices observed can be placed in the more general

context of a tendency in nature to reduce the number of free

parameters, within a given equivalence class of structures. So, for

example, the two unit-cell parameters a and c of the tetragonal and

the hexagonal system, respectively, are reduced to a single one (say a)

in the corresponding integral lattice cases. The general situation can

be analyzed further according to facts (the what), properties (the

which) and reasons (the why). The main facts underlying the present

note are:

± sharp peaks in the frequency distribution of crystals as a function

of lattice parameters;

± rational axial ratios a2=c2 for most of the pronounced peaks in the

distribution of crystals and for a number of axial-symmetric bio-

macromolecules (one case only is reported here);

± intrinsic properties of integral lattices (independent of their

point-group symmetry), currently investigated in mathematics as

integral quadratic forms (positive de®nite and inde®nite ones).

Only a few of the properties of these facts have been taken into

account from a crystallographic point of view, like:

± lattice±sublattice relations (revealed e.g. in zones of crystal

diffraction);

± connection with packing of given structural units (anions, cations,

atomic clusters, small or large single molecules, and so on);

± relations between the position of a diffraction spot and its

intensity and phase (beyond general and special extinction rules and

direct methods).

In order to recognize whether a given integral lattice is interesting

or not, one needs, in addition to the properties, an insight into the

possible reasons for the phenomena observed. These reasons could

be:

± purely accidental (an appropriate statistical analysis is required

for avoiding what is commonly denoted as numerology);

± due to perturbative effects (lattice parameters are less sensitive

to small shifts in the atomic positions than point-group and space-

group symmetries);

± based on clear geometrical principles (like close packing or

rational approximants of quasicrystals);

± due to hidden symmetries (often expressible in a higher-dimen-

sional description as for the Frank phase and/or in terms of non-

Euclidean symmetries, like crystallographic scaling);

± still unknown geometrical principles.

A number of the integral lattices indicated in Tables 1 and 2 are

possibly uninteresting, other ones are as expected to occur, but worth

investigating further. Some intriguing cases remain that could change

the conceptual frame of crystallography. For the author, most

mysterious is the molecular case, where polygrammal scaling, lattice±

sublattice relations and rational axial ratios involve integral lattices of

various dimensions.
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Figure 1
Tetragonal and cubic molecular form lattices of RNA guanosine-50-phosphate
quadruplex. The cubic lattice parameter a is given by the minimal axial distance of
the guanine O(6) atom �a � r � 2:28 AÊ ).
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